
ORTHOTROPIC AND COMPOSITE MATERIAL MODELING.
ANALYSIS OF STRESS AND STRAIN STATE IN THE
ORTHOTROPIC LAYER AND IN THE MULTILAYER

LAMINATE.

1 Introduction

1.1 Orthotropic materials

Occurrence of three mutually perpendicular planes of symmetry of the material properties is common
in engineering practice. Thus the number of independent coefficients of the constitutive matrix,
describing relation between stress and strain, reduces in this case to 9 and the material is called
orthotropic.

Material constants are set in a way that corresponds to the Young’s modulus E, Poisson’s ratio ν
and shear modulus G for isotropic case. Stress - strain relation takes the following form:



ε11
ε22
ε33
γ23
γ31
γ12


=



1
E11

− ν21
E22

− ν31
E33

0 0 0

− ν12
E11

1
E22

− ν32
E33

0 0 0

− ν13
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12





σ11
σ22
σ33
τ23
τ31
τ12


. (1.1)

Constants E11, E22 and E33 are called tensile strenght moduli (Young’s moduli) in directions 1, 2
and 3 respectively. G12, G23 and G31 are shear moduli in corresponding planes, and νij denotes Pois-
son’s ratios. Constants appearing in the constitutive matrix must fulfill additional relations resulting
from its symmetry:

ν12
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= ν21
E22

,
ν13
E11

= ν31
E33

,
ν23
E22

= ν32
E33

. (1.2)

In result, the consitutive law for the tridimentional ortothropic material consists of 9 independent
material constants: E11, E22, E33, ν21, ν31, ν32, G12, G23, G31. Moduli Eii are obtained from proper
tensile tests performed along the main axes of orthotrophy. Obtaining shear moduli Gij demands a
proper shear tests, whereas Poisson’s ratios νij are determined by the following ratio: − εjj

εii
calculated

for a sample with only tensile stress σii acting on it.

1.2 Strains and stresses in the orthotropic layer

Many composite structures consist of layers with the orthotropic properties. In the analysis of the
stress - strain relation in the orthotropic layer we can assume the plane stress state. Assuming
that thin, orthotropic layer with the principal orthotropic directions 1 and 2 is located in XY plane
with the force acting only in the same plane (fig. 1.1) we obtain τxz = τyz = σzz = 0 as well as
τ31 = τ23 = σ33 = 0. From the equation 1.1 we obtain:

γ31 = 0, γ23 = 0, ε33 = − ν13
E11

σ11 −
ν23
E22

σ22. (1.3)

2



Figure 1.1: Coordinate systems in the orthotropic layer.

Relations between stresses and strains reduce to the following form:
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Matrices from equations 1.4 are symmetrical, therefore only 4 independtent material constants are
neccesary to its full determination, for example: E11, E22, ν12 and G12.

In the engineering literature the constants are usually assigned in a specyfic way: E11 > E22 thus
coefficient ν12 is called major and ν21 minor Poisson’s ratio.

Relations 1.4 correspond to the case in which directions 1 and 2 are the principal orthotropic
directions of the layer. However, in many cases axes of the selected coordinate system are not colinear
with the material’s principal orthotropic directions. Relations between stress and strain states in two
arbitrary cartesian coordinate systems, rotated relative to each other by the angle θ, are as follows:σx′x′
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Transformation matrix [T ] is given by:

[T ] =


cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

 . (1.6)

It is worth noting that relations 1.5 correlate stresses (strains) in two arbitrary, rotated by angle
θ, coordinate systems and apply both to isotropic and anisotropic medium. The angle θ is measured
counterclockwise from x, y axes to x’, y’ axes.

To show relations between components of stress state and components of strain state for the
orthotropic layer we assume that the principal orthotropic directions 1 and 2 are pivoted by α from x
and y directions of the cartesian coordinate system (fig. 1.1). General stress - strain relation for the
orthotropic layer in an arbitrary coordinate system, determined by the α, has the following form:
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S∗
ij are given by following equations:

S∗
11 = S11c

4 + (2S12 + S66)s2c2 + S22s
4,

S∗
12 = S12c

4 + (S11 + S22 − S66)s2c2 + S12s
4,

S∗
22 = S22c

4 + (2S12 + S66)s2c2 + S11s
4,

S∗
66 = S66c

4 + 2(2S11 + 2S22 − 4S12 − S66)s2c2 + S66s
4,

S∗
16 = (2S11 − 2S12 − S66)sc3 − (2S22 − 2S12 − S66)s3c,

S∗
26 = (2S12 + S66 − 2S22)sc3 − (2S12 + S66 − 2S11)s3c,

(1.8)

where s = sinα, c = cosα and Sij coefficients are equal to:

S11 = 1
E11

, S12 = −ν21
E22

, S22 = 1
E22

, S66 = 1
G12

. (1.9)

Q∗
ij are given by following equations:

Q∗
11 = Q11c

4 + (Q12 + 2Q66)s2c2 +Q22s
4,

Q∗
12 = Q12c

4 + (Q11 +Q22 − 4Q66)s2c2 +Q12s
4,

Q∗
22 = Q22c

4 + 2(Q12 + 2Q66)s2c2 +Q11s
4,

Q∗
66 = Q66c

4 + (Q11 +Q22 − 2Q12 − 2Q66)s2c2 +Q66s
4,

Q∗
16 = (Q11 −Q12 − 2Q66)sc3 − (Q12 −Q22 − 2Q66)s3c,

Q∗
26 = (Q12 +Q66 + 2Q22)sc3 − (Q11 +Q12 − 2Q66)s3c,

(1.10)

where Qij are equal to:

Q11 = E11
1− ν12ν21

, Q12 = ν12E22
1− ν12ν21

, Q22 = E22
1− ν12ν21

, Q66 = G12. (1.11)

It is noteworthy that for α 6= k π2 all of the coefficients of the matrices [Q∗] and [S∗] are nonzero
and full coupling between the stress state components and the strain state components exists. Simple
tension leads only to elongation in the direction of acting force and to compression in the transverse
direction. Shear deformation does not occur. Nonetheless, in the case of tension in the different,
arbitrary chosen direction, we will also observe change in the angles. On that account, in general,
when the axes x, y are not collinear with the principal orthotropy directions, then the principal stress
directions are not collinear with the principal strain directions.

1.3 Basics of laminate mechanics

While analysing the properties of a laminate consisting of many closely connected orthotropic layers,
we often assume that it behaves similarly to a single layer. The simpliest mathematical relation can be
obtained for so-called thin laminates. The thickness of individual layers as well as the overall thickness
are much smaller compared to the other dimensions. In this case, the stress components perpendicular
to the layers might be neglected. It can also be assumed that the strain countinuity is maintained
during the transision between the layers. Due to differences in the properties of individual layers, the
stress field is discontinuous between layers.

If we assume small deflections only and Kirchoff’s hypothesis, stating that straight lines normal
to the laminate surface remain normal to it after deformation is preserved, then the deformation of
laminate subjected to force and moment is described by:
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, (1.12)

where : ε0
x, ε

0
y, γ

0
xy - components of the strain state in the laminate’s mid-layer,

κx = ∂2w0
∂x2 , κy = ∂2w0

∂y2 , κxy = ∂2w0
∂x∂y - curvature of the laminate’s surface,

w0 - deflection of the laminate’s mid-surface,
Nx, Ny, Nxy, Mx, My, Mxy - internal forces in the laminate (fig. 1.2),
A - extensional stiffness matrix of the laminate,
B - coupling stiffness matrix of the laminate,
D - bending stiffness matrix of the laminate.

a)

b)

Figure 1.2: Laminate consisting of multiple orthotropic layers: a) internal forces, b) laminate lay-up.
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The matricesA,B,D characterize laminate behaviour. They are symmetrical and have dimensions
3 x 3. They depend on the orientation of the layer and its location in the laminate:

Aij =
N∑
k=1

Q∗k
ij (zk − zk−1), Bij = 1

2

N∑
k=1

Q∗k
ij (z2

k − z2
k−1), Dij = 1

3

N∑
k=1

Q∗k
ij (z3

k − z3
k−1), (1.13)

where : zk - distance of k-th layer from the mid-surface,
N - number of layers in the laminate,
Q∗k
ij - stiffness matrix of k-th layer transformed to the xy system.

Above relations are simplified in the case of symmetrical or anti-symmetrical layering of the lami-
nate with respect to the mid-surface. Symmetry or anti-symmetry of the laminate applies not only to
the angle of laminating, but also to the mechanical properties and thickness of the layer.

Based on equations 1.3 in case of the symmetry, it can be concluded that all coefficients of the
coupling stiffness matrix B are equal to zero, and thus lead to significant simplification of the math-
ematical description of the laminate.

2 Examplorary problems

2.1 Unidirectional tension of the orthotropic layer

An orthotropic layer has the following properties: E11 = 2 ·105 MPa, E22 = 0.5 ·105 MPa, ν12 = 0.25,
G12 = 2 · 104 MPa. Find strain components in xy system resulting from tension in x direction -
σx = 10 MPa as a function of the magnitude of α (fig. 2.1).

Figure 2.1: Orthotropic layer subjected to tension in an arbitrary direction α.

Solution:
Utilizing relations 1.7 - 1.11 we can obtain:

εxx = S∗
11σxx,

εyy = S∗
12σxx,

γxy = S∗
66σxx,

(2.1)
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where:

S∗
11 = S11c

4 + (2S12 + S66)s2c2 + S22s
4,

S∗
12 = S12c

4 + (S11 + S22 − S66)s2c2 + S12s
4,

S∗
16 = (2S11 − 2S12 − S66)sc3 − (2S22 − 2S12 − S66)s3c,

S11 = 1
E11

, S22 = 1
E22

, S12 = −ν21
E22

= −ν12
E11

, S66 = 1
G12

.

(2.2)

By substituting given material’s properties values and constant tensile stress σxx we obtain results
for different magnitudes of α (table 2.1).

α[◦] 0 5 15 30 45 60 75 85 90
εxx[‰] 0.500 0.528 0.741 1.297 1.812 2.047 2.040 2.006 2.000
εyy[‰] -0.125 -0.142 -0.266 -0.547 -0.688 -0.547 -0.266 -0.142 -0.125
γxy[‰] 0.000 -0.323 -0.862 -1.137 -0.750 -0.162 -0.112 -0.062 0.000

Table 2.1: Strains in the orthotropic layer as a function of α.

Same results can be obtained by FEM analysis.

2.2 Unidirectional tension of the multilayer laminate

Determine the response of the 6-layer composite plate to the unidirectional tensile force Nx = 10 N
mm .

The thickness of each layer is equal to 0.125 mm, and the laminating angles are as follows: [45◦, −45◦,
45◦, −45◦, 45◦, −45◦].

Dimmensions of the plate:
• length Lx = 100 mm

• width Ly = 100 mm
Each layer is made from epoxy resin with graphite fibers with the following properties:

• Young’s moduli E11 = 211000 MPa, E21 = 5300 MPa,

• shear modulus G12 = 2600 MPa,

• Poisson’s ratio ν12 = 0.25
Solution: Equation 1.12 in this case takes the following form:


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=



1.348 · 10−4 −1.216 · 10−4 0 0 0 −1.690 · 10−5

−1.216 · 10−4 1.348 · 10−4 0 0 0 −1.690 · 10−5

0 0 2.685 · 10−5 −1.690 · 10−5 −1.690 · 10−5 0
0 0 −1.690 · 10−5 −2.876 · 10−3 −2.594 · 10−5 0
0 0 −1.690 · 10−5 −2.594 · 10−3 2.876 · 10−3 0

−1.690 · 10−5 −1.690 · 10−5 0 0 0 5.728 · 10−4




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0
0
0
0
0


. (2.3)

Thus the strain state of the model can be calculated:

ε0
x

ε0
y
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xy

κx
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κxy


=



1.348 · 10−3

−1.216 · 10−3

0
0
0

−1.690 · 10−4


. (2.4)
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Given the strain state is constant, the maximal displacements of the model can be calculated
analytically:

Ux = ε0
xLx = 0.135 mm,

Uy = ε0
yLy = −0.122 mm,

Uz = κxy
LxLy

2 = −0.845 mm.

(2.5)

3 Typical numercial routine

3.1 Unidirectional tension of the orthotropic layer

Preprocesor:

A. Creation of the shape of the analyzed field (e.g. square with a side length 100 mm),

Figure 3.1: Creation of the square.

B. Material properties definition (E11, E22, ν12, G12).
According to equations 1.4 constant ν12 should be considered as major Poisson’s ratio. We
provide that condition during the material properties definition.

Figure 3.2: Defining properties of the orthotropic material.
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C. Type of the finite element selection (Structural Solid, e.g. Plane183 ),

Figure 3.3: Selecting the Plane183 finite element.

D. Finite element mesh generation.
As we are analyzing constant stress and strain states in the whole area of the model, very fine
mesh is not neccesary. Length of the all edges can be changed via:

Mesh Tool −→ Size Control −→ Global −→ Set (fig. 3.4).

Figure 3.4: Meshing the model. Size of the element was set with the Global Size Control command.
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E. Definition of principal ortohtrophy directions.
The orthotropy directions coincide with the directions of so-called Element Coordinate System.
If the orientation of this system is not specifically determined, it remains coincident with global
cartesian system (No. 0).
Directions of element coordinate systems can be checked graphically:

PlotCtrl −→ Symbols (fig. 3.5).

Figure 3.9A shows initial directions of element coordinate systems. As can be seen (triad in
the center of the element) they are consistent with the xy coordinate system.

Figure 3.5: Enabling presentation of the element coordinate system.

Element coordinate systems can be modified for individual elements. For this purpose we must
define local coordinate rotated to be consistient with the prinicpal orthotropy directions. To do
that we are going to utilize Working Plane (WP). It needs to be rotated first:

WorkPlane −→ Offset WP by Increments (fig. 3.6).

After rotation we can create local coordinate system:

WorkPlane −→ Local Coordinate Systems −→ Create Local CS −→ At WP Origin (fig. 3.7).

To modify coordinate system assigned to the elements we use the EMODIF command:

Modelling −→ Move/Modify −→ Elements −→ ModifyAttrib (fig. 3.8).
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Figure 3.6: Rotating WP by 30◦ (angle of orthotropy direction in this example). Notice the proper
direction of rotation.

Figure 3.7: Creation of the local coordinate system.
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Figure 3.8: Modification of the element coordinate system for all elements.

Figure 3.9: Element coordinate systems before (A), and after (B) the direction modification.

12



F. Application of the constraints (statically determinate) and the loads acting on the model (pres-
sure 10 N

mm on two of the model edges).

Figure 3.10: Applied boundary condition. Two keypoints were constrained in a statically determinate
manner and the pressure was applied on two vertical edges of the model.

Solution: Running the solution: Solve −→ Current Load Step.

General Postprocessor:

Evaluation of the results and preparation of the plots. It can be confirmed that the components of
stress and strain states are constant in the whole analysis field. In addition results agree with those
from the table 2.1 obtained for the 30◦.

Although the specimen is subjected to tension only in the horizontal direction, we can observe
shear deformation.

Figure 3.11: Results obtained from analysis. A - displacements in the x direction. B - displacements
in the y direction.
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It is unjustified to use Huber-Mises reduced stress theory for the orthotropic material as a measure
of effort of the material. ANSYS software allows to use, in relation to anisotropic materials, different
yield criterions: maximum stress criterion, maximum strain criterion or Tsai-Wu criterion. It is nec-
essary to provide the relevant material strength data:

Preprocessor −→ Material Props −→ FailureCrit −→ Add/Edit (fig. 3.12).

Most important of those data are: ultimate tensile and compressive strength in principal orthotropy
directions and ultimate shear strengths. Plots show distribution of strenght index, where 0 corre-
sponds to the stress-free state and 1 - the ultimate strenght of the orthotropic material in particular
stress state.

Figure 3.12: Addition of the critical material values.

Figure 3.13: Avaiable yield criterions for the orthotropic materials.
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3.2 Unidirectional tension of the multilayer laminate

Preprocesor:

A. Creation of geometrical model of the plate (square with a side length 100 mm),

Figure 3.14: Creation of the plate’s geometry.

B. Definition of the orthotropic material properties.

Figure 3.15: Defining properties of the orthotropic material.

C. Selection of the finite element type - multilayer shell:

Structural −→ Shell −→ 8node 281 (fig. 3.16).

To present results for all layers, we need to select adequate type of saving in the element’s
options:

Storage of layer data K8 −→ All layers. (fig. 3.17).
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Figure 3.16: Selection of the Shell element.

Figure 3.17: Selection of the element’s results saving option.

D. Definition of thickness, material model and the directions of orhtotropy for all of the layers (fig.
3.18).
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Figure 3.18: Creation of the laminate lay-up. To add next layer use the button Add Layer.

E. Finite element meshing
After the mesh is created the lay-up of the laminate can be illustrated in two ways. Schematically:

Sections −→ Shell −→ Lay-up −→ Plot Section. (fig. 3.19A),

or graphically, with each layer’s thickness shown:

Plot Ctrl −→ Style −→ Shape and Size −→ Eshape on. (fig. 3.19B).

Figure 3.19: Two methods of laminate presentation. A - schematically with the directions of or-
thotropy. B - graphically with visible thickness of each layer.

F. Definition of the boundary conditions. Constraints must provide free deformation of the model
(i.e. they must be statically determinate). For example ux = uy = uz = 0 at the point A,
ux = uz = 0 at D and uz = 0 at B (fig. 3.20). As a load, we apply tensile pressure on the
edges AD and BC equal to 10 N

mm .
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Figure 3.20: Completed FEM model.

Solution: Running the solution: Solve −→ Current Load Step.

General Postprocessor:
Evaluation and comparision to the analytical solution of the displacements obtained from the

analysis.
To show stress and strain in the selected layer, we use Options for Output command with option

Specified Layer number filled accordinlgy (fig. 3.21).

Figure 3.21: Options to show results in individual layers.
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Figure 3.22: Results obtained from calculations. A - displacements in x direction [mm], B - displace-
ments in y direction [mm], C - displacements in z direction [mm], D - stresses in x direction - σx
[MPa] in the whole laminate.

4 Further tasks
1. Perform the analysis from section 3.1 with a different angle of the orthotropy direction. Compare

obtained results with the analytical values from the table 2.1.

2. Perform the analysis of the tensile test of a square plate (100mm x 100mm) with central circural
hole (R = 25mm) for two directions of orthotropy: α = 0◦ and α = 45◦. Calculate the strenght
indexes for four avaiable yield hypothesis (fig. 3.13).

3. Perform the analysis for a plate laminate with a different lay-up. Calculate the displacements
for the x, y and z directions.
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